Fermat’s Little Theorem

نویسنده

  • KEITH CONRAD
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension and Generalization of Fermat’s Little Theorem to the Gaussian Integers

It can . . . come as a bit of a shock to meet your first non-obvious theorem, which will typically be Fermat’s Little Theorem. — Dominic Yeo [10] The non-obviousness of Fermat’s Little Theorem is the most interesting part of any introductory number theory course. We are therefore motivated to determine if Fermat’s Little Theorem can be extended to the Gaussian integers, as many other useful pro...

متن کامل

Generalizations of Fermat's Little Theorem via Group Theory

Let p be a prime number and a be an integer. Fermat’s little theorem states that a ≡ a (mod p). This result is generally established by an appeal to the theorem of elementary group theory that asserts that x|G| = 1 for every element x of a finite group G. In this note we describe another way that group theory can be used to establish Fermat’s little theorem and related results.

متن کامل

Primality Tests Based on Fermat's Little Theorem

In this survey, we describe three algorithms for testing primality of numbers that use Fermat’s Little Theorem.

متن کامل

Fermat’s Test

Fermat’s little theorem says for prime p that ap−1 ≡ 1 mod p for all a 6≡ 0 mod p. A naive extension of this to a composite modulus n ≥ 2 would be: for a 6≡ 0 mod n, an−1 ≡ 1 mod n. Let’s call this “Fermat’s little congruence.” It may or may not be true. When n is prime, it is true for all a 6≡ 0 mod n. But when n is composite it usually has many counterexamples. Example 1.1. When n = 15, the t...

متن کامل

Introductory Number Theory

We will start with introducing congruences and investigating modular arithmetic: the set Z/nZ of “integers modulo n” forms a ring. This ring is a field if and only if n is a prime number. A study of the multiplicative structure leads to Fermat’s Little Theorem (for prime n) and to the Euler phi function and Euler’s generalization of Fermat’s Theorem. Another basic tool is the Chinese Remainder ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014